

Analyzing Gene Expression Patterns In Associative Learning Luther Evans, Newton North High School, Newton MA 02460 & BioScience Project, Wakefield, MA, 01880

Introduction

- Located in the temporal lobe of the brain, the limbic system includes the Hippocampus and Amygdala which are associated with learning and memory.
- The Hippocampus is responsible for the processing and storage of short-term memory, longterm memory, and spatial navigation. Though the Amygdala is commonly known to be linked with emotions, fear, and anxiety, studies have proved its involvement in the modulation of memory consolidation.
- Purpose of this project is to analyze gene expression patterns for brain regions involved in the encoding, storage, learning, and retrieval of memories. Identify candidate gene for this behavior.

Methods

Gene expression data for the Hippocampus and Amygdala were collected from the The Allen Brain Atlas (<u>http://www.brain-map.org</u>) using the differential search option. Data was collected from four available donors.

Venny 2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/) was used to compare the gene lists from four chosen brain donors to identify genes that are common and different across each donor.

Statistical analysis was done in Python Anywhere (<u>https://www.pythonanywhere.com</u>) an online programming tool

Cluster analysis and Gene Ontology classifications were obtained with DAVID (<u>https://david.ncifcrf.gov</u>)

The STRING database (<u>http://string-db.org</u>) was used to identify potential interacting partners, pathways, and other genes relating to associative learning using experimental data from gene studies.

GeneWeaver (<u>http://www.geneweaver.org</u>) was also used to find further information for relevant genes.

Results

Gene Expression Profiling

The heat maps display microarray data: fold expression of various genes in the Hippocampus and Amygdala from the profiles of four donors (H0351.2001, H0351.2002, H0351.1009, H0351.1012). Each column represents a tissue sample. This data is collected from mRNA that is copied into cDNA and labeled and hybridized to an array containing all human genes. Data with a fold change of ~3 or above was used in the analysis. 7 genes are common between the two brain regions: BCL11B, CARTPT, FOXG1, GABRQ, KCNG3, SYTL5, TRPC4.

Two different sample types are used for comparison: the sample under study and the control. The heat maps range in color based on the z-score over a probe. Red areas of the heat maps indicate that the expression of the sample is greater than the control (z-score of +3 and above), green areas show that the expression is less than the control (z-score of -3 and below), and black areas show that the expression is equal to the control (z-score of 0).

Common Genes

The Venn diagrams are a visual of the number and percentage of genes that overlap in each region of the brain in four chosen donors (H0351.1009; List 1, H0351.1012; List 2, H0351.2001; List 3, H0351.2002; List 4

Amygdala

Hippocampus

Top 20 Genes with Highest Expression Values

The graphs of the genes from the donors shown above display the 20 genes with the top fold change values in the Hippocampus. 5 out of 20 of these genes were found to be common in all four chosen donors. FEZF2 had the highest fold-change value in these two donors (H0351.2001, H0351.2002).

stats				
	fold-change_1	fold-change_2	fold-change_3	fold-change_4
count	414.000000	414.000000	414.000000	414.000000
mean	4.608548	4.541111	4.734249	4.476053
std	2.292733	2.077189	2.167167	1.914674
min	2.948000	2.969000	3.088000	2.983000
25%	3.315500	3.284750	3.406500	3.299250
50%	3.818000	3.834500	3.991000	3.777000
75%	5.006500	4.880750	5.295000	4.912250
max	22.084000	21.676000	24.331000	18.306000
	varianc	e		
	fold-ch	ange 1	5.256623	
	fold-ch	ange 2	4.314715	
	fold-ch	<u> </u>	4 696612	

Candidate Gene Analysis

	Annotation Cluster 8	Enrichment Score: 2.26	G		<u> </u>	Count	P_Value	e Benja
	GOTERM_BP_FAT	behavior	<u>RT</u>	1 - C		16	2.2E-6	2.0E-4
	GOTERM_BP_FAT	learning or memory	<u>RT</u>	1 - C		8	2.0E-5	1.2E-3
	GOTERM_BP_FAT	behavioral fear response	RT	1 - C		3	5.5E-3	1.9E-
	GOTERM_BP_FAT	behavioral defense response	<u>RT</u>	1.00		3	5.5E-3	1.9E-
	GOTERM_BP_FAT	associative learning	RT	1.00		3	7.1E-3	2.3E-
	GOTERM_BP_FAT	neurological system process	RT	2 C		18	8.7E-3	2.5E-
	GOTERM_BP_FAT	fear response	RT	1.11		3	8.9E-3	2.4E-
	GOTERM_BP_FAT	learning	<u>RT</u>	1.00		4	1.0E-2	2.7E-
	GOTERM_BP_FAT	multicellular organismal response to stre	<u>ss</u> RT	1.11		3	3.5E-2	4.6E-
	GOTERM_BP_FAT	cognition	<u>RT</u>	1 C		8	5.3E-1	9.9E-
	GOTERM_BP_FAT	defense response	RT	i		3	9.5E-1	1.0E0
Curre Curre	e Report nt Gene List: List_1 nt Background: Hon DAVID IDs						<u>Help a</u>	nd Mar
	ord(s)					6	<u>l Down</u>	load F
OF	FICIAL_GENE_SYMBOL	GENE NAME			Rel	ated Genes	Spe	cies
GABRA	45	gamma-aminobutyric acid (GABA) A receptor, alph	a <u>5</u>		RG	Ho	no sapier	IS
GRIN2	В	glutamate receptor, ionotropic, N-methyl D-asparta	ate 2B		RG	Ho	<u>no sapier</u>	<u>IS</u>
NEURO		neurogenic differentiation 2			RG		no sapier	

Gene ontology (GO) was used to classify the common genes from the venny graph. The (GO) term biological process (BP) were exclusively used to seekout genes of interest and genes that were relevant to the hippocampus. The gene report for associative learning provided three genes: GABRA5, GRIN2B, and NEURO2D.

Protein Interaction Network

Geneset Analysis

There were 20 common genes expressed between two gene sets connected with associative learning.

Conclusions

- The Gene expression patterns on the heatmaps for the Hippocampus are highly similar across all four donors whereas, for the Amygdala, it is more variable
- The three common genes between four donors that were involved in the associative learning are NEUROD2, GRIN2B, and GABRA5. NEUROD2 is a transcription regulator for neuron differentiation. GRIN2B is a NMDA receptor subtype of glutamate-gated ion channels. GABRA5 is a subunit of a GABA receptor which are the major inhibitory receptors in the mammalian brain.
- Amygdala results: There was no relationship found at this time for gene expressed in the Amygdala and learning/memory, although there are genes associated with a broad range of neural processes that were found using an integrative genomics database.

Key References

http://www.ncbi.nlm.nih.gov/pubmed/8532847